Abstract

AbstractWind turbine generation systems are built at locations where few tall structures are found nearby so as to obtain good wind conditions, and thus, they are often struck by lightning. To promote wind power generation, lightning‐protection methodologies for such wind turbine generation systems have to be established. This paper presents the result of an experimental study of lightning overvoltages in wind turbine generation systems using a reduced‐size wind turbine model. Overvoltages observed at wavefronts of lightning surges are focused on in this study. In the experiments, lightning strokes to one of the blades and to the nacelle were considered, and voltages and currents at various positions of the wind turbine model were measured. The following points have been deduced from the results: (i) The voltage rise due to the tower footing resistance can cause a significant voltage difference between the tower foot and an incoming conductor led from a distant point. Also, a voltage difference between the bottom of down conductors installed inside the tower and an incoming conductor can be of significance. (ii) The lightning current flowing through the tower body induces voltages in main and control circuits which form loops, and the induced voltages can cause overvoltages and malfunctions. (iii) Traveling‐wave phenomena in a wind turbine generation system for a lightning strike to the tip of a blade and to the nacelle have been clarified from the measured waveforms. This information can be used for developing an EMTP simulation model of wind turbine generation systems. © 2007 Wiley Periodicals, Inc. Electr Eng Jpn, 158(4): 22– 30, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/eej.20466

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.