Abstract

The Grouping Genetic Algorithm (GGA) is an extension to the standard Genetic Algorithm that uses a group-based representation scheme and variation operators that work at the group-level. This metaheuristic is one of the most used to solve combinatorial optimization grouping problems. Its optimization process consists of different components, although the crossover and mutation operators are the most recurrent. This article aims to highlight the impact that a well-designed operator can have on the final performance of a GGA. We present a comparative experimental study of different mutation operators for a GGA designed to solve the Parallel-Machine scheduling problem with unrelated machines and makespan minimization, which comprises scheduling a collection of jobs in a set of machines. The proposed approach is focused on identifying the strategies involved in the mutation operations and adapting them to the characteristics of the studied problem. As a result of this experimental study, knowledge of the problem-domain was gained and used to design a new mutation operator called 2-Items Reinsertion. Experimental results indicate that the state-of-the-art GGA performance considerably improves by replacing the original mutation operator with the new one, achieving better results, with an improvement rate of 52%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.