Abstract

The present study uses power data from panel meter connected to the micro-grid to identify electrical energy consumption of the school appliances and their behavior in both warm-up, standby and active operation states. Before the conduction of experiments a load auditing of the school appliances was carried out by reading the rated power of each device (e.g. photocopy machine, printer, and fridge). The captures of this kind of information were essential as it provides a starting point to determine energy use of each appliance and hence simplify the process of identification. The electric parameters such as active power, reactive power and current were used to analyze the behavior of electrical appliances in all states. Experimental results show that, both active and reactive power were found to be high for old Canon photocopy machine as compared to new Canon photocopy machine. Another experiment reveals that printing one copy by using HP laser printer consumes about 700 W, while photocopying one copy with new Canon machine utilizes approximately 1100 W. This study concludes that new photocopy machine consumes more electric energy in warm-up state as compared to other states (standby and active operation states). Future work is to develop an algorithm for demand side management strategies which will enable efficient utilization of the electric energy from the micro-grid and hence bring the intended energy impact to the school.

Highlights

  • IntroductionOver the past twenty years, many approaches have been proposed to monitor and identify electric loads

  • The present analysis considers the experimental results without backup uninterruptible power supply backup (UPS) only, which gives the actual variations of power consumption

  • The results of both composite load (CL) and load signature analysis are presented

Read more

Summary

Introduction

Over the past twenty years, many approaches have been proposed to monitor and identify electric loads These methods can be broadly divided into two main categories: transient state and steady state [9] [10]. Regardless of the electrical parameters chosen to create the load signatures, the recognition algorithm can operate using three different approaches: analyzing the transient characteristics (the period of time when the load is turned ON or OFF), the steady state characteristics or a combination of both [14]. Guzel and Ustunel [15], suggested that the use of both transient and steady states can increase the possibility of identifying which load type is turned “ON”, since single state signature has its own limitation. This work uses active and reactive power plotted in the P-Q plane to identify the turn ON and OFF of school electrical appliances

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.