Abstract

The characteristics of high-speed machining (HSM) dynamic milling forces was investigated. Recent studies in chip segmentation are discussed. A Mikron 700 High-Speed Machining Center was used in the end-milling of AISI H13 tool steel using PVD TiN coated two flute micrograin carbide tools. Dynamic force signals were studied using a real-time data acquisition system for spindle speeds from 3,750 to 31,500 rpm for a 6 mm dia tool. Frequency domain studies were also carried out for a larger tool of 12 mm dia for spindle speeds between 10,000 and 40,000 rpm. The trend and frequency domain aspects of the dynamic forces were evaluated and discussed. The fundamental concept of modeling cutting forces based on chip morphology is revisited. A new basis for modeling dynamic forces from the static component and harmonic contributions is presented. This approach for modeling the dynamic HSM force signal accounts for secondary harmonics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call