Abstract

The testing of a synthetic aperture technique, the ETAM algorithm, is extended and its performance for CW pseudorandom signals and broadband ship noise is examined. The results show the limitations of the technique and are of special interest for operational systems development. In the CW experiments, the transmitted signal was generated with high temporal coherence, and loss of the spatial and temporal coherence of the received signal was introduced only by the medium and the stability of the towed array. In the experiments that included the pseudorandom signal and the ship noise, the temporal coherence of the transmitted signals was deliberately chosen to be poor in order to study the effects and the performance of this algorithm with broadband signals. The related experimental results show that for received signals, which have their segments over the synthesizing period highly cross-correlated, a synthetic aperture array gain was achieved that corresponds to the length of an equivalent fully populated array.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.