Abstract

A sonobuoy system based on a fiber optic vector hydrophone (FOVH) is demonstrated. Phase Generated Carrier– Arctangent (PGC-ATAN) demodulation algorithm was used to acquire real-time underwater acoustic signals. After the optimal design of the laser configuration, the background noise of the FOVH is -104.3dB re rad √ Hz at 1 kHz, with an acceleration sensitivity of 41.5dB re rad/g which allows the system detecting signals at DSS0. The theoretical derivation of FOVH directivity is proposed and the design criterion is discussed. The ratio of the minimum to the maximum amplitude of the FOVH directivity is -35dB by symmetrical structure design of the FOVH. A lake trial shows that the maximum detection range of the sonobuoy system is more than 15km for an acoustic signal of 210dB re μPa, and the bearing of a moving target can be estimated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.