Abstract

An experimental facility for forming high-voltage pulses with amplitudes of 30–250 kV and durations of 100–500 ps and electron beams with a current density of up to 1000 A/cm2 is described. The facility was built using the principle of energy compression of a pulse from a nanosecond high-voltage generator accompanied by the subsequent pulse sharpening and cutting. The setup is equipped with two test coaxial chambers for exciting radiation in semiconductor crystals by an electron beam or an electric field in air at atmospheric pressure and T = 300 K. Generation of laser radiation in the visible range under field and electron pumping was attained in ZnSSe, ZnSe, ZnCdS, and CdS (462, 480, 515, and 525 nm, respectively). Under the exposure to an electric field (up to 106 V cm−1), the lasing region was as large as 300–500μm. The radiation divergence was within 5°. The maximum integral radiation power (6 kW at λ = 480 nm) was obtained under field pumping of a zinc selenide sample with a single dielectric mirror.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.