Abstract

This paper describes a controlled self-motion study recently carried out using a small autonomous underwater vehicle (AUV) in a controlled environment in which regular and random waves can be generated accurately for various frequencies and heights. In this study, the AUV was one of the Florida Atlantic University's Ocean Explorer series vehicles, and the controlled environment was chosen to be the Maneuvering And Sea-Keeping (MASK) facilities located at the David Taylor Model Basin. During the entire study, 29 sets of experimental motion and wave data were collected under various wave frequencies and heights, vehicle alignment, and operating depths. Due to the wave tank constraint, the vehicle speed was restricted to be less than 1.5 m/s and the wave frequency higher than 0.3 Hz without significantly affecting the self-motion analysis. Time history and power spectral density results suggest that the roll-induced pitching response was considerably larger for the wave frequencies tested, as compared to the pitch-induced rolling response. Standard deviation results reveal that the existing OEX is capable of producing approximately 3/spl deg/ (peak-to-peak) pitch, 0.7/spl deg/ (peak-to-peak) roll, and 0.6/spl deg/ (peak-to-peak) yaw at 2-m depth in the head-sea condition when the encountering wave frequency is close to 0.4 Hz. However, at 1.5-m vehicle depth, significant surges were observed in pitching and rolling motion, suggesting that the OEX is currently unsuitable to maintain accurate depth-following within this range at sea-state 2 or higher. It is hoped that the results presented can provide better insights into how a small AUV with a nonideal body shape reacts to waves of different sea states, and how vehicle self-motion can be streamlined by choosing proper vehicle speed, heading, and depth, given that the wave characteristics are available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.