Abstract
Recently, the images reconstruction approaches are very essential in digital image processing (DIP), especially in terms of removing the noise contaminations and recovering the content of images. Each image reconstruction approach has different mathematical models. Therefore a performance of individual reconstruction approach is varied depending on several factors such as image characteristic, reconstruction mathematical model, noise model and noise intensity. Thus, this paper presents comprehensive experiments based on the comparisons of various reconstruction approaches under Gaussian and non-Gaussian noise models. The employing reconstruction approaches in this experiment are Inverse Filter, Wiener Filter, Regularized approach, Lucy-Richardson (L-R) approach, and Bayesian approach applied on mean, median, myriad, meridian filters together with several regularization techniques (such as non-regularization, Laplacian regularized, Markov Random Field (MRF) regularization, and one-side Bi-Total Variation (OS-BTV) regularization). Three standard images of Lena, Resolution Chart, and Susie (40th) are used for testing in this experiment. Noise models of Additive White Gaussian Noise (AWGN), Poisson, Salt&Pepper, and Speckle of various intensities are used to contaminate all these images. The comparison is done by varying the parameters of each approach until the best peak-signal-to-noise ratio (PSNR) is obtained. Therefore, PSNR plays a vital parameter for comparisons all the results of individual approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.