Abstract

Electroencephalography (EEG) correlates of olfaction are of fundamental and practical interest for many reasons. In the field of neural technologies, olfactory-based brain-computer interfaces (BCIs) represent an approach that could be useful for neurorehabilitation of anosmia, dysosmia and hyposmia. While the idea of a BCI that decodes neural responses to different odors and/or enables odor-based neurofeedback is appealing, the results of previous EEG investigations into the olfactory domain are rather inconsistent, particularly when non-primary processing of olfactory signals is concerned. Here we developed an experimental paradigm where EEG recordings are conducted while a participant executes an olfaction-based instructed-delay task. We utilized an olfactory display and a sensor of respiration to deliver odors in a strictly controlled fashion. We showed that with this approach spatial and spectral EEG properties could be analyzed to assess neural processing of olfactory stimuli and their conversion into a motor response. We conclude that EEG recordings are suitable for detecting active processing of odors. As such they could be integrated in a BCI that strives to rehabilitate olfactory disabilities or uses odors for hedonistic purposes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call