Abstract
In this work, an experimental-numerical screening method for studying the elastic–plastic properties in high strength steel subjected to environmentally assisted degradation due to hydrogen is proposed. The experiments were performed on single-edge-notch bend specimens loaded with a monotonic constant displacement rate, and the specimens were electrochemically hydrogen pre-charged and/or in-situ. A systematic investigation was conducted of the influence of current density, pre-charging time and loading rate on the fracture mechanical properties. It was found that the loading rate had the greatest effect on the J-R curves, and that the environmental ductile-to-brittle transition region was obtained in a less than a day of experimental time. In this transition region it was found from the fractography that the dominating mode of failure changed from dimple to dominating intergranular fracture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.