Abstract

This study aimed to develop an equipment and system of resistance exercise (RE), based on squat-type exercise for rodents, with control of training variables. We developed an operant conditioning system composed of sound, light and feeding devices that allowed optimized RE performance by the animal. With this system, it is not necessary to impose fasting or electric shock for the animal to perform the task proposed (muscle contraction). Furthermore, it is possible to perform muscle function tests in vivo within the context of the exercise proposed and control variables such as intensity, volume (sets and repetitions), and exercise session length, rest interval between sets and repetitions, and concentric strength. Based on the experiments conducted, we demonstrated that the model proposed is able to perform more specific control of other RE variables, especially rest interval between sets and repetitions, and encourages the animal to exercise through short-term energy restriction and “disturbing” stimulus that do not promote alterations in body weight. Therefore, despite experimental limitations, we believe that this RE apparatus is closer to the physiological context observed in humans.

Highlights

  • Muscle strength and power have been considered strong exogenous stimuli that are able to improve sports performance and promote therapeutic effects in several pathological conditions characterized by muscle wasting, such as cancer, disuse, sepsis, and sarcopenia [1, 2]

  • To condition the animal to the experimental model it was necessary to carry out periods of energy restriction on the previous day of nose-poke 1 and 2 and standing 1 phases

  • When the sound device was integrated to the conditioning, animals took 58.9% less time to complete the cycles (768.4 ± 109.1 seconds; P = 0.03)

Read more

Summary

Introduction

Muscle strength and power have been considered strong exogenous stimuli that are able to improve sports performance and promote therapeutic effects in several pathological conditions characterized by muscle wasting, such as cancer, disuse, sepsis, and sarcopenia [1, 2]. In this context, resistance exercise (RE) has demonstrated significant effects regarding neural [3], metabolic [4], and functional adaptations [5] in skeletal muscle. Experimental research has been used to provide primary results that may support subsequent studies in humans

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call