Abstract

High density vertically aligned carbon nanotube (VACNT) forests are considered as a promising conductive material for many applications (interconnects in microelectronics or contact material layer in sliding contact applications). It is thus crucial to characterize the electrical resistance of these forests, especially in contact with the inherent top/bottom conductive substrates. This paper aims to develop an original method to determine the contribution of the different terms in this electrical resistance, which is measured with a tipless atomic force microscope used in high accuracy “force mode.” VACNT stacks with different heights on AlCu substrate with or without Au/Pd top coating are studied. The electrical contact area between the probe tip and the forest is considered to be equivalent to the classical electrical contact area between a tip and a rough surface. With this assumption, the scattering resistance of a mono-wall CNT is 14.6 kΩ μm−1, the top/bottom contact resistance is, respectively, 265 kΩ/385 kΩ. The bottom resistance divided in half is obtained by an interface substrate/CNT catalyst treatment. The same assumption leads to an effective compressive modulus of 175 MPa. These results are consistent with the values published by other authors. The proposed method is effective to optimise the CNT interface contact resistance before integration in a more complex functional structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call