Abstract
This paper aims at comprehensive investigations towards design and installation of a moderate size shock tube (7 m long having an inner diameter of 55 mm, 20 mm thickness) and its experimental calibration through comparative parametric study. Necessary instrumentations are incorporated for measuring shock speeds and pressure rise across primary as well as reflected shock, obtained using nitrogen/helium as driver gas. The experimental evidence shows reasonable agreement between theoretical (one-dimensional shock tube relations) results. Further, an E-type coaxial surface junction thermocouple (CSJT) has been prepared in the laboratory and oil-bath calibration experiment gives its 'sensitivity'. Measurement of instantaneous surface temperature rise and subsequent stagnation heat flux are obtained using CSJT mounted on a specially-designed end-flange. The thermocouple noted a maximum rise of temperature of 7,800 K, marked as a characteristic constant of the sensor; since it is found to be independent of the magnitude of the step change in temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.