Abstract
An experimental investigation on the thermal mixing phenomena of three quasi-planar vertical jets, with the central jet at a lower relative temperature than the two adjacent jets, was conducted. The central jet was unheated (‘cold’), while the two adjacent jets were heated (‘hot’). The temperature difference and velocity ratio between the heated (h) and unheated (c) jets were, Δ T hc=5°C, 10°C and r= V cold,exit/ V hot,exit=1.0 (isovelocity), 0.7, 0.5 (non-isovelocity) respectively. The typical Reynolds number was Re D =1.8×10 4, where D is the hydraulic diameter of the exit nozzle. Velocity measurement of a reference single-jet and triple-jet arrangement were taken by ultrasound Doppler velocimetry (UDV) while temperature data were taken by a vertically traversed thermocouple array. Our UDV data revealed that, beyond the exit region, our single-jet data behaved in the classic manner. In contrast, the triple-jet exhibited, for example, up to 20 times the root-mean-square velocity values of the single-jet, especially in the regions in-between the cold and hot jets. In particular, for the isovelocity case ( V exit=0.5 m/s) with Δ T hc=5°C, we found that the convective mixing predominantly takes place at axial distances, z/ D=2.0–4.5, over a spanwise width, x/ D∼|2.25|, centered about the cold jet. An estimate of the turbulent heat flux distribution semi-quantitatively substantiated our results. As for the non-isovelocity case, temperature data showed a localized asymmetry that subsequently delayed the onset of mixing. Convective mixing however, did occur and yielded higher post-mixing temperatures in comparison to the isovelocity case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.