Abstract
This study investigated the effect of tin (0, 6, and 9 wt%) and aging time (0, 16, 24, and 32 hrs) on the microstructure and mechanical properties of the AZ80-1.2RE Mg alloy. The results obtained indicate that the addition of Sn improved the mechanical properties. For the AZ80-1.2RE alloy, upon Sn addition, strength of 195 MPa and percentage elongation of 7.6 are observed to be found at 6 wt% Sn, which is attributed to the precipitates of Al2RE, Mg2Sn, and Mg-Sn-RE phases. After heat treatment and aging, the properties of the casted alloys were found to be affected. As aging time increases, small precipitates are observed to be dissolved in primary Mg phase, due to which the properties are found to be decreased from the as-cast condition to aging at 16 hours. The strength of the 6wt% Sn alloy decreased due to the high stress concentration at the large precipitate site during aging from 16 hours to 24 hours and then increased due to the grain boundary strengthening effect at the 32-hour aging time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.