Abstract
The present work examines the effects of the radial protrusion of four cylindrical rods at different lengths within the flow field of a down-scaled turbine draft tube under part-load operating conditions. Four rods were placed on the same plane 90 degrees apart. The protrusion length was varied from zero to approximately 90 % of the draft tube radius. Time-resolved pressure measurements were performed to quantify the effect of the rod protrusion, using two pressure sensors at the same vertical level 180 degrees apart. Such sensor configuration enabled the decomposition of the signals into rotating and plunging components of the rotating vortex rope (RVR). The results show that different levels of mitigation are achieved for the rotating and plunging components depending on the protrusion length. The effects on the plunging component differ from the ones on the rotating component. The RVR plunging pressure pulsations slightly increase with the initial rod protrusion and then significantly drop after a certain length. On the contrary, the rotating component of the pressure pulsation amplitudes immediately decreases with the onset of rod protrusion. However, an optimum length is obtained in both cases where the highest mitigation occurs before reaching the maximum protrusion. This observation falls in line with the previous investigations conducted for oscillatory rod protrusions, further approving the point that a closed-loop controller should accompany the mitigation technique to achieve optimum mitigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Earth and Environmental Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.