Abstract

Natural convection heat transfer from an isothermal horizontal fin attached to a cylinder, confined between two adiabatic walls of constant height is investigated by the Mach–Zehnder interferometry technique. This study is focused on the effect of a perforated fin attached to the bottom of a cylinder while the vertical position of the cylinder (Y ) changes between two walls with a constant distance of W measuring 1.5 times the cylinder diameter. The cylinder's average Nusselt numbers are determined for three ratios of vertical position to its diameter, Y /D = 0.5, 1.5, 2, and 3. The Rayleigh number ranges from 4.5 × 103 to 1.2 × 104. The distance between the walls is chosen to be 1.5 D, that is, an optimum distance at which the Nusselt number is maximum. The effect of the perforated fin on free convection heat transfer is investigated and compared with other works. Results show outstanding enhancement in heat transfer, with a minimum result of 40% and maximum of 90%. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21041

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.