Abstract

Fused deposition modelling (FDM) can build parts with complex geometry with relatively less material waste and time from computer aided design (CAD) file saved in stereolithography (.stl) format. Since FDM builds functional parts, it is not only subjected to static loading but also dynamic loading. The behaviour of build parts under repetitive cyclic loading resulting in fatigue needs to be established because it affects functionality as well as the durability. The present study aims at investigating the mechanism of fatigue and influence of FDM process parameters on fatigue life when the build parts are subjected to repetitive cyclic loads. Low cycle fatigue (LCF) test is carried out under strain-controlled mode for better characterisation of fatigue life of FDM build parts. Using response surface methodology, the relationship between FDM process parameters and fatigue life is developed. Genetic programming (GP) technique is adopted to predict the fatigue life of the build parts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.