Abstract
Nowadays, facial authentication systems are present in many daily life devices. Their performance is influenced by the appearance of the facial trait that changes according to many factors such as lighting, pose, variations over time and obstructions. Adaptive systems follow these variations by updating themselves through images acquired during system operations. Although the literature proposes many possible approaches, their evaluation is often left to data set not explicitly conceived to simulate a real application scenario. The substantial absence of an appropriate and objective evaluation set is probably the motivation of the lack of implementation of adaptive systems in real devices. This paper presents a facial dataset acquired by videos in the YouTube platform. The collected images are particularly suitable for evaluating adaptive systems as they contain many changes during the time-sequence. A set of experiments of the most representative self adaptive approaches recently appeared in the literature is also performed and discussed. They allow to give some initial insights about pros and cons of facial adaptive authentication systems by considering a medium-long term time window of the investigated systems performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.