Abstract

AbstractThe drive to produce electrical energy by directly compressing piezoceramic material using mechanical stress stands behind the present test series. To be able to correctly choose the right material, PZT disks manufactured by three different manufacturers have been tested under static mechanical compressive and cyclic loads. It was shown that although the disks can withstand high mechanical stresses (up to 100 MPa) without any visible damage, their transduction is confined to much lower stresses (50–75 MPa), a range in which the electrical output is a function of the square of the applied stress. This range is further reduced, when the PZT is subjected to cyclic mechanical loading, yielding an applicable mechanical stress in the range of 30–40 MPa, from which electrical power can be produced without further deterioration. To compensate for the low electric power, due to relatively low mechanical stresses applied on the PZT disks, one can increase the volume of the material used by placing layers of piezoelectric material one on top of the other, each subjected to the same mechanical stress. This will yield the required electric power from a safe given mechanical stress without reduction in its output.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call