Abstract

The manipulator is the key component of the micromanipulator. Using the axial expansion and contraction properties, the piezoelectric tube can drive the manipulator to achieve micro-motion positioning. It is widely used in scanning probe microscopy, fiber stretching and beam scanning. The piezoceramic tube actuator used to have continuous electrodes inside and outside. It is polarized along the radial direction. There are relatively high polarization voltages, but poor axial mechanical properties. A new tubular actuator is presented in this paper by combining interdigitated electrodes and piezoceramic tubes. The preparation, polarization and mesoscopic mechanical properties were investigated. Using Lead Zirconate Titanate (PZT-52) as a substrate, the preparation process of interdigitated electrodes by screen printing was studied. For initial polarization voltage determination, the local characteristic model of the actuator was extracted and the electric field was analyzed by a finite element method. By measuring the actuator’s axial displacement, we measured the actuator’s polarization effect. Various voltages, times and temperatures were evaluated to determine how polarization affects the actuator’s displacement. Optimal polarization conditions are 800 V, 60 min and 150 °C, with a maximum displacement of 0.88 μm generated by a PZT-52 tube actuator with interdigitated electrodes. PZT-52 tube actuators with a continuous electrode cannot be polarized under these conditions. The maximum displacement is 0.47 μm after polarization at 4 kV. Based on the results, the new actuator has a more convenient polarization process and a greater axial displacement from an application standpoint. It provides technical guidance for the preparation and polarization of the piezoceramic tube actuator. There is potential for piezoelectric tubular actuators to be used in a broader range of applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.