Abstract

Natural convection heat transfer in rectangular fin-arrays mounted on a vertical base was investigated experimentally. An experimental set-up was constructed and calibrated to test 15 different fin configurations. Fin length and fin thickness were kept fixed at 100 and 3 mm respectively, while fin spacing was varied from 4.5 to 58.75 mm and fin height was varied from 5 to 25 mm. Base-to-ambient temperature difference was also varied through a calibrated wattmeter ranging from 10 to 50 W. The results showed that fin spacing is the most significant parameter in the performance of fin arrays; and for every fin height, for a given base-to-ambient temperature difference, there exists an optimum value for the fin spacing for which the heat transfer rate from the fin array is maximized. It was seen that higher heat transfer enhancement are obtained with vertically oriented bases than with horizontally oriented bases for fin arrays of the same geometry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call