Abstract

This paper presents an experimental investigation on low velocity impact (LVI) behaviour of flexible biocomposite laminates with different stacking sequence namely jute/rubber/jute (JRJ), jute/rubber/rubber/jute (JRRJ), jute/rubber/jute/rubber/jute (JRJRJ) and subjected to different impact energy levels using a conical shaped impactor. The performances of the proposed flexible composites are evaluated based on their energy absorption, peak force, coefficient of restitution (CoR), energy loss percentage (ELP) and failure behavior. Results indicated that JRJ provides better energy absorption and JRJRJ provides better damage resistance when subjected to LVI. Microscopic analysis revealed that the flexible composites fail mainly due to the tearing mechanism of the matrix as opposed to cracking in case of conventional stiff composites. It was also found that flexible composites are free from delamination. Compared to conventional stiff composites, there is no catastrophic failure observed in the proposed flexible composite. The overall performance evaluation of these proposed flexible composites indicates that these flexible composites can be potential sacrificial materials such as claddings used to protect primary structural components subjected to LVI. The systematic methodology employed in the present study serves as a benchmark for the effective utilization and selection of flexible composites for LVI applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call