Abstract

This study investigates the effects of boost pressure on combustion and performance of an early direct injection homogenous charge compression ignition (HCCI) engine at a low compression ratio (CR). A 2.0 L, four-cylinder, four-stroke, gasoline direct injection engine was converted to operate in early direct injection HCCI mode. In addition, a supercharger unit was developed for engine boosting. The experiments were performed at different intake manifold absolute pressures (MAP) from 1.0 to 1.6 bar at different engine loads using n-heptane fuel. The effects of boost pressure were investigated on HCCI combustion and engine performance characteristics using volumetric efficiency, in-cylinder pressure, heat release rate (HRR), maximum in-cylinder pressure and gas temperature, CA50 (crank angle by which 50% of the fuel is burnt), combustion duration, apparent combustion efficiency, indicated mean effective pressure (IMEP), brake mean effective pressure (BMEP), friction mean effective pressure (FMEP), indicated thermal efficiency (ITE), brake thermal efficiency (BTE), heat loss, exergy of heat loss, coefficient of variation of IMEP (COVIMEP), maximum pressure rise rate (MPRR) and ringing intensity (RI). The experimental results showed that high-efficiency HCCI operation is feasible at an engine compression ratio as low as 9.2 once the engine variables are properly optimized and an appropriate level of supercharging is utilized. An increase in indicated thermal efficiency was seen as boost pressure increased. In addition, combustion phasing advanced by increasing boost pressure or increasing air–fuel equivalence ratio values. Combustion events with CA50 2–3 °CA aTDC show the highest thermal efficiency especially at low boost pressure conditions. In addition, the pressure rise rate and ringing intensity increased by increasing air–fuel equivalence ratio and MAP. The test results also showed that HCCI operating range can be extended with the increase of intake manifold pressure especially at high load limits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.