Abstract

The thermal interaction of an electrical and an optical component located on the same vertical circuit board is studied experimentally. The effects of component proximity and convective flow rate on overall power dissipation from each component are analyzed. The components are represented by isothermal heat sources mounted to a standard 1.59mm (0.0625 in) thick FR4 circuit board. In natural convection situations, when the spacing between components is great enough that the component thermal footprints do not interfere, the power dissipation reaches a maximum “plateau” value that is independent of spacing. If the components are located close enough together that their thermal footprints interfere then the total power dissipation is highly dependent on component spacing (relative location of the electrical source and the geometric positioning of both sources). In forced convection, the total power dissipated increases with both Reynolds number and component spacing. As in natural convection, the relative location of the electrical sources and the positioning of the sources are found to have a strong influence on power dissipation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.