Abstract

This paper aims at explaining the experimental observations of the stability and redispersibility of an aqueous ethylcellulose latex through the electrokinetic characterization of the particles. The surface charge and the electrical double layer thickness play an essential role in the stability of the system, hence the need for a full characterization of the polymeric particles. The effect of both pH and ionic strength of the dispersion medium were investigated. It was found that at acid pH values the latex displays “delayed” or “hindered” sedimentation: in such conditions, the electrophoretic mobility and zeta potential are rather low, indicating a small electrokinetic charge on the particles. At alkaline pH, when the dissociation of ionizable surface groups must be complete, the zeta potential is high and negative. The electrostatic repulsion between polymer particles is responsible for the low sedimentation volume and poor redispersibility of the latex. The effect of NaCl and CaCl 2 concentration on both the zeta potential and stability of the latexes was also investigated: it was found that CaCl 2 has the greatest influence, yielding flocculated, easily redispersible systems when its concentration in the dispersion medium is high enough. There qualitative observations were ascertained by means of calculations of the potential energy of interaction between particles. In the case of NaCl solutions, a high and relatively wide potential energy barrier was predicted, that may prevent the particle aggregation. Above 5 mM NaCl a shallow minimum in the potential energy curves must lead to the formation of aggregates. Similar results were found with CaCl 2 solutions, although in this case the secondary minima are deeper and appear at lower concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.