Abstract
The particle tracking (PT) technique is used to study turbulent diffusion of particle pairs in a three-dimensional turbulent flow generated by two oscillating grids. The experimental data show a range where the Richardson–Obukhov law 〈r2〉 = Cεt3 is satisfied, and the Richardson–Obukhov constant is found to be C = 0.5. A number of models predict much larger values. Furthermore, the distance–neighbour function is studied in detail in order to determine its general shape. The results are compared with the predictions of three models: Richardson (1926), Batchelor (1952) and Kraichnan (1966a). These three models predict different behaviours of the distance–neighbour function, and of the three, only Richardson's model is found to be consistent with the measurements. We have corrected a minor error in Kraichnan's (1996a) Lagrangian history direct interaction calculations with the result that we had to increase his theoretical value from C = 2.42 to C = 5.5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.