Abstract

It is generally accepted that emissions of nitrogen oxides (NOx) increase as the volume fraction of biodiesel increases in blends with conventional diesel fuel. While many mechanisms based on biodiesel effects on in- cylinder processes have been proposed to explain this observation, a clear understanding of the relative importance of each has remained elusive. To gain further insight into the cause(s) of the biodiesel NOx increase, experiments were conducted in a single- cylinder version of a heavy-duty diesel engine with extensive optical access to the combustion chamber. The engine was operated using two biodiesel fuels and two hydrocarbon reference fuels, over a wide range of loads, and using undiluted air as well as air diluted with simulated exhaust gas recirculation. Measurements were made of cylinder pressure, spatially integrated natural luminosity (a measure of radiative heat transfer), engine-out emissions of NOx and smoke, flame lift-off length, actual start of injection, ignition delay, and efficiency. Adiabatic flame temperatures for the test fuels and a surrogate #2 diesel fuel also were computed at representative diesel-engine conditions. Results suggest that the biodiesel NOx increase is not quantitatively determined by a change in a single fuel property, but rather is the result of a number of coupled mechanisms whose effects may tend to reinforce or cancel one another under different conditions, depending on specific combustion and fuel characteristics. Nevertheless, charge-gas mixtures that are closer to stoichiometric at ignition and in the standing premixed autoignition zone near the flame lift- off length appear to be key factors in helping to explain the biodiesel NOx increase under all conditions. These differences are expected to lead to higher local and average in-cylinder temperatures, lower radiative heat losses, and a shorter, more-advanced combustion event, all of which would be expected to increase thermal NOx emissions. Differences in prompt NO formation and species concentrations resulting from fuel and jet-structure changes also may play important roles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.