Abstract

To investigate the influence of surface tension and viscosity on the atomization performance of solid cone nozzles and improve their dust reduction efficiency in industrial and mining enterprises, this study employed a self-built PDPA dust-fog coupling experimental system to explore the effects of different surface tension and viscosity solutions on atomization performance from three aspects: axial, radial, and fog field distribution. The experimental results indicate that compared with surface tension, surface tension has a greater influence on droplet size and velocity in the axial direction. In the radial direction, increasing surface tension and reducing viscosity within a certain range can make the droplet size and velocity distribution more uniform. Additionally, surface tension and viscosity significantly affect the fog field distribution. It was found that a decrease in surface tension can result in a closer proximity of the droplet velocity and size expansion area to the nozzle, while an increase in viscosity can lead to a more prolonged stable area. Furthermore, optimizing the surface tension and viscosity can significantly enhance the efficacy of dust reduction for respirable dust. Consequently, the application of the aforementioned atomization principles to regulate the fog field characteristics of solid cone nozzles can effectively mitigate dust in the production process and augment the dust reduction rate of industrial and mining enterprises.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.