Abstract
Employing a counter-flow figure-of-eight heat exchanger, direct measurements are made of the Nusselt modulus for radial heat transfer to air pressurized up to 20 atmospheres for Reynolds numbers up to 1.20 × 105. For each heat transfer determination a simultaneous friction factor measurement is made and it is found that the latter is independent of heat transfer.Results in reasonable agreement with the momentum transfer theory are obtained for Reynolds numbers less than 0.75 × 105, provided the ratio of the eddy diffusivities for heat and momentum is taken as unity. For such values of the Reynolds number, the same value of the heat transfer coefficient was obtained irrespective of whether the Reynolds number was obtained by having high pressure (density) and low velocity, or high velocity and low pressure. For higher values of the Reynolds number, however, the value of the heat transfer coefficient appeared to become dependent on the over-all heat transfer rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.