Abstract

Experiments were conducted to investigate the nucleate pool boiling heat transfer of pure water and alumina/water nanofluids on different micro- and nanostructured surfaces prepared via the thermal spray coating method. Results indicate that nanofluids boiling on all the test surfaces led to critical heat flux (CHF) values greater than that obtained for the base fluid (i.e., water). Higher roughness value, however, led to higher CHF values in boiling over the surfaces. Another finding of this study indicated that CHF values obtained with boiling on Cu-coated micro- and nanosurfaces were identical although the heat transfer coefficient (HTC) values obtained for boiling on the micro-structure surface were higher than those obtained for a nanostructured surface with almost the same roughness. A series of consecutive nanofluid boiling cycles were also performed on the aluminum-coated nanostructured surface. The CHF value obtained for water boiling on the surface undergoing repeated nanofluid boiling cycles was by 27% higher than that obtained for a clean surface although the relevant HTC values were nearly identical.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.