Abstract

The solid-state direct diffusion bonding of a near α-phase titanium alloy to an austenitic stainless steel by means of the phase transformation superplasticity (PTSP) caused by the cycles of heating and cooling has been carried out. The test results showed that, under the conditions of Tmax = 890°C, Tmin = 800°C, cyclic number of heating and cooling N = 10 cycles, specific pressure P = 5 MPa, heating rate Vh = 30°C/s and cooling rate Vc = 10°C/s, the ultimate tensile strength of the joint reached its maximum value (307 MPa), and the bonding time was only 120 s. In the phase transformation superplastic state, the deformation of titanium alloy has a character of ratcheting effect and it accumulates with the cycles of heating and cooling. The observations of tensile fracture interface showed that both the brittle intermetallic compound (FeTi) and the solid solution based on β-Ti were formed on the interface, and the more in quantity and the smaller in size the solid solutions are, the higher the ultimate tensile strength is.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.