Abstract

The work presented in this paper intends to deepen our understanding of the mechanisms involved in the spark ignition of liquid fuel sprays. An experimental study is presented regarding the ignition of monodisperse droplet chains of Jet A-1 aviation kerosene in a generic model combustor under well-defined boundary conditions. Breakdowns created by focused laser radiation were used as ignition sparks. They featured rapid spatial expansion, resulting in the formation of spherical blast waves in the surrounding air. The focus of this study lay on the effect of the blast waves on the fuel droplets. Blast wave trajectories were investigated by Schlieren imaging. Their interaction with kerosene droplets was observed by a high-speed camera via a long distance microscope; the droplets were visualized by laser-induced Mie scattering. Droplets within a distance of ten millimetres from the breakdown position were disintegrated by the aerodynamic forces of the post-shock flow field. Different breakup modes were observed, depending on the distance from the breakdown position.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.