Abstract

The flow in a conical nozzle is examined experimentally for a range of hypervelocity conditions in a free-piston shock tunnel. The pitot pressure levels compare reasonably well with an inviscid numerical prediction which includes a correction for the growth of the nozzle wall boundary layer. The size of the nozzle wall boundary layer seems to be well predicted by semi-empirical expressions developed for perfect gas flows, as do data from other free-piston shock tunnels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.