Abstract

Bump foil journal bearings (BFJBs) are widely used in the superchargers of aviation piston engines (APEs). This paper proposes a method to evaluate the operating state of superchargers by monitoring the bearing temperature. A numerical model with a repeating symmetrical structure in the axial direction is established based on a certain type of supercharger, which solves the temperature field of BFJBs with the non-isothermal Reynolds equation and energy equation. It can be used to analyze the effect of thermal expansion on lift-off speed and stop-contact speed. A new test rig and six various BFJBs were designed to check the temperature characteristics of the BFJBs with variable load and speed. By comparing the numerical results with the experimental results, it was shown that the air film temperature increased almost linearly with the increase in bearing load and speed. However, the temperature increase caused by the rotation speed was significantly greater than the load. The structural parameters of the BFJB affected the bearing support stiffness, which had a nonlinear effect on the lift-off speed and air film temperature. Therefore, the proposed method to evaluate the state of superchargers with BFJBs was effective. These thermal characteristics can be used to guide BFJB design and predict the life cycle of BFJBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call