Abstract

Abstract To obtain better radiation shielding, a new polyester has been made by the combination of 40 wt% of polyester and 30 wt% of fine waste marble mixed along with PbO (30–0) wt% and Bi2O3 (0–30) wt%. A few significant shielding parameters such as linear attenuation coefficient (LAC), half-value layer (HVL), mean free path (MFP), and effective atomic number (Z eff) have been measured experimentally using an HPGe detector. Theoretical values have also been calculated using XCOM software. With the aim of validating the experimental setup, the measured shielding parameters, such as LAC and HVL, have been compared with their theoretical analogs. At 0.662 MeV energy, the prepared new polyester’s HVL and MFP exhibited that the sample PWPBi-10 composed of polyester (40 wt%), fine waste marble (30 wt%), PbO (20 wt%), and Bi2O3 (10 wt%) provides the best shielding ability among other studied polyesters herein. The MFP behavior indicates that the ratio of Bi2O3 and PbO on these new polyesters has a direct impact on their radiation-shielding properties. It is noteworthy that new polyester PWPBi-10 exposed the lowest value of MFP compared to the rest of the studied samples. In conclusion, considering all the measured shielding parameters, it can be stated that the sample PWPBi-10 has the ultimate radiation diffusion capability among the rest of the studied samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.