Abstract

Organ motion in proton therapy affects treatment dose distribution during both double-scattering (DS) and uniform-scanning (US) deliveries. We investigated the dosimetric impact of target motion using three-dimensional polymer gel dosimeters and a programmable motion platform. A simple one-beam treatment plan with 16 cm range and 6 cm modulation was generated from the treatment planning system (TPS) in both the DS and US modes. One gel dosimeter was irradiated with a stationary DS beam. Two other gel dosimeters were irradiated with the DS and US beams while they moved in the same sinusoidal motion profile using a programmable motion platform. The dose distribution of the stationary DS delivery agreed with the TPS plan. Dosimetric comparisons between DS motion delivery and the MATLAB-based motion model showed insignificant differences. Dose–volume histograms of a cylindrical target volume inside the gel dosimeters showed target coverage degradation caused by motion. A three-dimensional gamma index calculation (3% and 3 mm) confirmed different dosimetric impacts from DS and US with the same target motion. This polymer-gel-dosimeter-based study confirmed the dosimetric impact of intrafraction target motion and its interplay with temporal delivery of different energy layers in US proton treatments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call