Abstract

Dimpled surfaces have gained increasing attention in recent years for their potential to reduce turbulent skin friction, a capability previously acknowledged for its beneficial implications on heat transfer. As a passive drag reduction method, dimpled surfaces offer significant advantages for marine applications due to their effectiveness and practical applicability. However, despite numerous studies, conflicting opinions and inconsistent drag reduction rates persist in the literature. This paper addresses these ambiguities and offers valuable insights into the effectiveness of dimpled surfaces for drag reduction in fully turbulent flows. We conducted an extensive experimental investigation involving various dimple configurations, including different depth-to-diameter ratios, diameters and orientations, utilising a specialised Fully Turbulent Flow Channel facility and a Particle Image Velocimetry system. Our findings demonstrated that circular dimple geometries, particularly those with low depth ratios, can achieve significant drag reduction of up to 27% as the Reynolds number increases. These results highlight the substantial potential of dimpled surfaces for improving energy efficiency in marine applications, where skin friction accounts for a significant portion of the total drag experienced by large vessels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.