Abstract

Recently, many processes have been reported to produce biodiesel via alkali-catalyzed transesterification of triglyceride molecules. However, this requires certain precautions. First, the triglyceride should be nearly pure. Studies show that the presence of water or free fatty acids acts as a poison for the catalyst. Second, the price of pure triglyceride does not allow biodiesel to compete with diesel fuel in cost. These disadvantages are the main reasons why researchers have recently focused on other feedstocks for biodiesel fuel production. Therefore, we investigated the chemical conversion of lauric acid and methanol to methyl laureate fuel via esterification reaction over amylum sulfuric acid as an efficient, biodegradable, and recyclable solid acid catalyst. Synthesized methyl laureate fuel was fittingly characterized by Fourier transform infrared spectroscopy as well as by 1H and 13C nuclear magnetic resonance spectroscopic techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.