Abstract

Abstract This work presents the design and application of a low-cycle reciprocating loading test on 23 recycled aggregate concrete-filled steel tube columns and 3 ordinary concrete-filled steel tube columns. Additionally, a systematic study on the influence of various parameters (e.g., slenderness ratio, axial compression ratio, etc.) was conducted on the seismic performance of the specimens. The results show that all the specimens have good hysteresis performance and a similar development trend of skeleton curve. The influence of slenderness ratio on the seismic index of the specimens is more significant than that of the axial compression ratio and the steel pipe wall thickness. Furthermore, artificial intelligence was applied to estimate the influence of parameter variation on the seismic performance of concrete columns. Specifically, Random Forest with hyperparameters tuned by Firefly Algorithm was chosen. The high correlation coefficients (R) and low root mean square error values from the prediction results showed acceptable accuracy. In addition, sensitivity analysis was applied to rank the influence of the aforementioned input variables on the seismic performance of the specimens. The research results can provide experimental reference for the application of steel tube recycled concrete in earthquake areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.