Abstract

BackgroundFast development of pyrethroid resistance in malaria vectors prompted the development of new vector control tools including combination of insecticides with different modes of action as part of resistance management strategies. Olyset Plus® is a new long-lasting insecticidal net, in which, permethrin and a synergist, piperonyl butoxide (PBO), are incorporated into filaments. Mixture nets such as this may have application against resistant mosquitoes, particularly those whose resistance is based on oxidative metabolism. There may also be enhanced activity against susceptible mosquitoes since mixed function oxidases are involved in a many metabolic activities including activation to form bioactive compounds.MethodsBio-efficacy of Olyset Plus was evaluated against susceptible malaria vector, Anopheles fluviatilis in experimental huts. Deterrence, blood feeding inhibition, induced exophily and killing effect were measured to assess the bio-efficacy. The results were compared with Olyset Net®, a polyethylene permethrin-incorporated LLIN and a conventionally treated polyester net (with permethrin) washed to just before exhaustion.ResultsResults showed significant reduction in entry (treatment: 0.4–0.8; control: 4.2 per trap-night) and increase in exit (56.3–82.9 % and 44.2 %) rates of Anopheles fluviatilis in the treatment arms compared to control (P < 0.05). While blood feeding rates declined in treatment arms (18.8–30.6 %), it increased in control (77.6 %) (P < 0.05). This was further evident from the blood-feeding inhibition rates in treatment arms (60.6–90.6 %). Total mortality was significantly higher in all treatment arms (96.3–100 %) compared to control arm (2 %) (P < 0.05). Chemical analysis for active ingredient (AI) showed retention of 75 and 88 % in Olyset plus and Olyset net respectively after 20 washes. Performance of Olyset Plus washed 20 times was equal to the CTN and Olyset Net against the susceptible malaria vector An. fluviatilis, fulfilling the WHO efficacy criteria of Phase II evaluation for LLIN. However, the benefit of incorporating PBO and permethrin together in a long-lasting treatment could not be demonstrated in the current study as the target vector species was fully susceptible to pyrethroids.ConclusionOlyset Plus, with its intrinsic bio-efficacy could be an effective vector control tool to prevent transmission of malaria by susceptible vectors like An. fluviatilis. However, the results of the current study need to be further supported by testing the net at village level (Phase III) for community acceptability. Before taking the net to village level, it needs to be verified whether the net is better than pyrethroid nets in terms of bio-efficacy against resistant An. culicifacies, another malaria vector that has developed resistance to synthetic pyrethroids in India.

Highlights

  • Fast development of pyrethroid resistance in malaria vectors prompted the development of new vector control tools including combination of insecticides with different modes of action as part of resistance management strategies

  • Among the long-lasting insecticidal nets (LLINs) undergone trials so far, DuraNet®, Interceptor®, MAGNetTM, Olyset Net®, PermaNet® 2.0, Royal Sentry® and YorkoolTM received full recommendation of World Health Organization Pesticide Evaluation Scheme (WHOPES) while DawaPlus® 2.0, LifeNet®, Olyset Plus® and PermaNet® 3.0 have been awarded with interim recommendation [10,11,12]

  • The current paper presents the results of the evaluation of efficacy of Olyset Plus LLIN carried out in experimental huts during 2011–2013 against a wild, free flying susceptible population of Anopheles fluviatilis sensu lato, in terms of mortality, deterrence, blood-feeding inhibition and induced exophily, in Odisha state, East-Central India following the WHO guidelines [19]

Read more

Summary

Introduction

Fast development of pyrethroid resistance in malaria vectors prompted the development of new vector control tools including combination of insecticides with different modes of action as part of resistance management strategies. Olyset Plus® is a new long-lasting insecticidal net, in which, permethrin and a synergist, piperonyl butoxide (PBO), are incorporated into filaments. Mixture nets such as this may have application against resistant mosquitoes, those whose resistance is based on oxidative metabolism. The LLINs, which retain insecticidal efficacy without retreatment for 3–5 years, represent an important innovation that is being scaled up globally for malaria prevention [6,7,8]. These nets are made up of synthetic fibers (polyester and polyethylene) that have been compounded with an insecticide. Two brands of LLINs viz., Olyset Net and PermaNet are already in use in some countries, including India

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call