Abstract
This paper presents a study of the thermal characteristics of a concentric-tube heat exchanger that is a key element in local ventilation device. The inner tube of the concentric-tube heat exchanger has a sinusoidal, wavy surface in the longitudinal direction, which enables heat-transfer enhancement. The tube can be stretched to a certain extent and thus change the corrugation of the heat-transfer surface area. We designed an experiment in which we used the Wilson-plot method to separately determine the convective heat-transfer coefficient on the inside and outside of the inner tube of the concentric-tube heat exchanger with different corrugation ratios. Based on the measurements correlation equations were developed to calculate the convective heat-transfer coefficient for any corrugation ratio, which allows us to simplify the design of local ventilation devices. Performed studies showed that, compared to a smooth tube, the convective heat-transfer coefficient increased only in the case of corrugated tubes with a corrugation ratio of less than 1.648, but the heat transfer was more intense for all considered corrugated tubes by 65–90% due to the increased heat-transfer surface area. The highest heat-transfer rate was observed for the case of the maximum-stretched tube with a corrugation ratio of 1.401, which is advantageous also in terms of material consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.