Abstract
An experimental evaluation of the microstructure, mechanical and functional fatigue properties of the Cu-11.70Al-0.45Be doped with Bx (x = 0.05, 0.10, 0.12, and 0.14 wt%) SMA wires has been carried out. The experiments were performed to investigate microstructure, phase/precipitates, and transformation temperatures for both as-cast and wire samples. Furthermore, tensile properties, shape recovery ratio, and functional fatigue evaluation have also been carried out for the wire samples. The investigation shows that the addition of the minor amount of boron and secondary processes involved during the specimen preparation induced excellent grain refinement. The addition of boron decreased transformation temperatures; however, there was not a considerable change observed due to the secondary process. It was observed that tensile properties increases with the boron addition, and complete shape recovery was observed for all the selected alloys. Finally, functional fatigue tests were conducted under constant stress condition and observed that the number of cycles until the failure has increased and more distance recovery was achieved with an increase in boron doping.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.