Abstract
N-version programming has been proposed as a method of incorporating fault tolerance into software. Multiple versions of a program (i.e. `N') are prepared and executed in parallel. Their outputs are collected and examined by a voter, and, if they are not identical, it is assumed that the majority is correct. This method depends for its reliability improvement on the assumption that programs that have been developed independently will fail independently. An experiment is described in which the fundamental axiom is tested. In all, 27 versions of a program were prepared independently from the same specification at two universities and then subjected to one million tests. The results of the tests revealed that the programs were individually extremely reliable but that the number of tests in which more than one program failed was substantially more than expected. The results of these tests are presented along with an analysis of some of the faults that were found in the programs. Background information on the programmers used is also summarized.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.