Abstract

Laser line scanning 3D digitising systems have a wide range of applications. Their working performance is mainly determined by the system calibration procedure and is also affected by the working conditions, CCD camera imperfections, and object surface optical characteristics. Therefore, a comprehensive evaluation of working performance is necessary before and during use. This study proposes an experimental method for the performance evaluation of a laser line scanner (LLS) with 8 scanning sensors developed in our laboratory. This method first obtains the dense point clouds of standard parts composed of disks, cylinders, and squares. Next, the single-layer point clouds located in horizontal planes of different heights are fitted using the least squares method to obtain the enclosed contours S. Three parameters, namely, the standard deviation of the distance distribution between points and S, the mean distance of the distance distribution, and the shape feature sizes, are used to evaluate the performance. The proposed method evaluates both the scanner as a whole and each scanning sensor. Using this method, more comprehensive information can be acquired to evaluate the scanner performance. The experimental results show that the absolute dimension size error and relative error are less than 5mm and 3%, respectively, and the relative shape error is less than 2%; therefore, the evaluated LLS system can meet the requirements for human anthropometry applications. Although each scanning sensor has different random and systematic error, these errors are the function of measurement depth. These conclusions are helpful for the further use of this scanner system and can be utilised to optimise this LLS system further.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call