Abstract
Many comparative studies on the performance of machine learning (ML) techniques for web cost estimation (WCE) have been reported in the literature. However, not much attention have been given to understanding the conceptual differences and similarities that exist in the application of these ML techniques for WCE, which could provide credible guide for upcoming practitioners and researchers in predicting the cost of new web projects. This paper presents a comparative analysis of three prominent machine learning techniques – Case-Based Reasoning (CBR), Support Vector Regression (SVR) and Artificial Neural Network (ANN) – in terms of performance, applicability, and their conceptual differences and similarities for WCE by using data obtained from a public dataset (www.tukutuku.com). Results from experiments show that SVR and ANN provides more accurate predictions of effort, although SVR require fewer parameters to generate good predictions than ANN. CBR was not as accurate, but its good explanation attribute gives it a higher descriptive value. The study also outlined specific characteristics of the 3 ML techniques that could foster or inhibit their adoption for WCE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Software Engineering and Its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.