Abstract

This paper is a comparative study of the performance of constant-time-gap autonomous control systems and co-operative longitudinal control systems that use inter-vehicle communication. Analytical results show that the minimum time gap that can be achieved in autonomous control is limited by the bandwidth of the internal dynamics of the vehicle. Experimental results from typical sensors and actuators are used to show that in practice it is very difficult to achieve a time gap less than 1 s with autonomous vehicle following. This translates to an inter-vehicle spacing of 30 m at highway speeds and a theoretical maximum traffic flow of about 3000 vehicles per hour. The quality of radar range and range rate measurements pose limitations on the spacing accuracy and ride quality that can be achieved in autonomous control. Dramatic improvements in the trade-off between ride quality and spacing accuracy can be obtained merely by replacing radar range rate in the autonomous control algorithm with the difference between the measured velocities of the two cars (a rudimentary form of co-operation). As a baseline comparison, the experimental performance of fully co-operative control is presented. An inter-vehicle spacing of 6.5 m is maintained in a platoon of 8 co-operative vehicles with an excellent ride quality and an accuracy of ±20 cm. Extending this to a 10-vehicle platoon makes it possible to achieve theoretical maximum traffic flows of about 6400 vehicles per hour. Another issue of importance addressed in the paper is the need to accommodate malfunctions in radar (ranging sensor) measurements. Measurement errors can occur due to hardware malfunctions as well as due to road curves, grades and the highway environment in the case of large inter-vehicle spacing. The ability of a co-operative control system to monitor the health of the radar and correct for such errors and malfunctions is demonstrated experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.