Abstract

BackgroundSubcellular distribution of 5-lipoxygenase (5-LO) to the perinuclear region and interaction with the 5-LO-activating protein (FLAP) are assumed as key steps in leukotriene biosynthesis and are prone to FLAP antagonists. MethodsFLAP and/or 5-LO were stably expressed in HEK293 cells, 5-LO products were analyzed by HPLC, and 5-LO and FLAP subcellular localization was visualized by immunofluorescence microscopy. Results5-LO and FLAP were stably expressed in HEK293 cells, and upon Ca2+-ionophore A23187 stimulation exogenous AA was efficiently transformed into the 5-LO products 5-hydro(pero)xyeicosatetraenoic acid (5-H(p)ETE) and the trans-isomers of LTB4. A23187 stimulation caused 5-LO accumulation at the nuclear membrane only when FLAP was co-expressed. Unexpectedly, A23187 stimulation of HEK cells expressing 5-LO and FLAP without exogenous AA failed in 5-LO product synthesis. HEK cells liberated AA in response to A23187, and transfected HEK cells expressing 12-LO generated 12-HETE after A23187 challenge from endogenous AA. FLAP co-expression increased 5-LO product formation in A23187-stimulated cells at low AA concentrations. Only in cells expressing FLAP and 5-LO, the FLAP antagonist MK886 blocked FLAP-mediated increase in 5-LO product formation, and prevented 5-LO nuclear membrane translocation and co-localization with FLAP. ConclusionThe cellular biosynthesis of 5-LO products from endogenously derived substrate requires not only functional 5-LO/FLAP co-localization but also additional prerequisites which are dispensable when exogenous AA is supplied; identification of these determinants is challenging. General significanceWe present a cell model to study the role of FLAP as 5-LO interacting protein in LT biosynthesis in intact cells and for characterization of putative FLAP antagonists.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.