Abstract

In this study, the nonlinear partial differential equations governing two phase flow through porous media are solved using two different methods, namely, finite difference and finite element. The capillary pressure term is considered in the mathematical model. The numerical results on a 2-D test case are then compared with the experimental drainage process and water flooding performed on a glass type micromodel. Based on the obtained results, finite difference technique needs less computational time for solving governing equations of two phase flow, but findings of this method show less agreement with the experimental data. The finite element scheme was found to be more adequate and its results are matched well with the obtained experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.